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Abstract. A semiclassical analysis is given for general chaotic Hamiltonians of the short-time 
quantum dynamics of surviva! probabilities of pure initial states in canonical bases. This 
is illustrated for  the Feingold-Peres coupled spin model which is classically chaotic. The 
dynamics predicted by the semiclassical arguments is compared with exact quantum 
mechanics and is found to be remarkably accurate even for f i  as large as 0.23. 

Much of the progress in the understanding of quantum systems, which classically show 
chaos, has been in terms of the properties of the distribution of adjacent energy level 
spacings [ l ]  and other statistics such as the spectral rigidity [ 2 ] .  These properties are 
found to fall into a small set of universality classes. There is no such overall understand- 
ing of dynamics. In this paper we will consider certain dynamical calculations for 
general chaotic Hamiltonians. These concern the time dependence of the occupation 
probability of an initial non-stationary pure state. This problem has attracted attention 
previously [ 31 but the considerations have been heuristic and relied on numerical 
experiments [3-51 which were qualitatively interpreted as due to non-stationary initial 
states having ‘ergodic’ or ‘democratic’ overlaps with the energy eigenstates of the 
system. For any quantum system with a small number of participating states in the 
dynamics, sizeable recurrences will appear and the correspondence with any classical 
features will be difficult to disentangle. It is expected that in the semiclassical limit 
such correspondences will emerge. In  the context of lowest-order semiclassical analysis 
we will be able to be more precise about ‘ergodic’ overlaps. Our analysis leads to 
quantitative predictions and the enunciation of a ‘democracy principle’ for quantised 
chaotic systems which agree well with numerical experiments on moderately small 
quantum systems for the coupled spin model [4,6]. 

Occupation probabilities are diagonal density matrix elements. If p is the density 
matrix and H is the Hamiltonian, then the Schrodinger equation implies that 

( i r r )  ( i r r )  
p ( r ) = e x p  -- p(0)exp - . 

For any complete set of states {lm); m = 0, 1 , 2 , .  . .} and set of energy eigenstates { IN) ;  
N = 0, 1,2,  . . .} we have 
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where 

and 

Although the above is quite general our semiclassical analysis requires further restric- 
tions. In particular we consider 

and states Im) which are eigenstates of either p* or 4, the canonically conjugate momenta 
and coordinates, respectively. 

A minimal requirement on a chaotic system is that it is ergodic. Berry [7]  and 
Voros [8] were influenced by this requirement and postulated that the Wigner function 
W ( p ,  q )  corresponding to a chaotic eigenstate of energy E is given by the measure 
appropriate to a microcanonical ensemble, i.e. 

where D is the number of degrees of freedom of the system and p and q are canonically 
conjugate c-number momenta and coordinates. Knowing the Wigner function allows 
us to calculate semiclassically 

” ”  

where n ( p ,  q )  is either p or q depending on the choice of the basis set {Im)}. For 
systems with closely spaced energy levels it is useful to introduce a coarse-graining 
scale A E  and write ( 2 )  as 

E s E \ - E , < E + A E  

From now on we will exclusively consider the calculation of pn,,,,(ti: 

where we define 

E G E , - E w <  E + A E  

It is straightforward to show that 

& , , ( E ) =  d E ‘ $ ( E ’ ) $ ( E ’ + E )  i 
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where 

and  
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(14) 

is the single-sided density of states. Classically an  ergodic system democratically visits 
all parts of phase space in the sense of a time average. Quantum mechanically $ , (EN)  
is the probability of overlap of an initial state with the state space of energy eigenstates 
where the integration measure is the democratic one of dE. We expect that $,(EN) 
will be largely structureless (except possibly near special symmetry points of the 
Hamiltonian) and thus reflect the democratic principle in the quantum chaotic case. 

In the limit AE 0, ( 1  1 )  gives the simple Fourier transform relationship 

Equations (9) and (13) - (  16) summarise the theoretical development. The value of this 
approach will be illustrated within the context of an autonomous spin Hamiltonian. 
An advantage of spin models is that the quantum theory involves only the dynamics 
of finite-dimensional matrices and so can be handled exactly. Feingold and Peres have 
introduced an  interesting continuous time non-integrable model [4,6] which consists 
of two coupled spins. The total angular momentum of each spin is separately conserved. 
We recall briefly the details of the model. The Hamiltonian is 

H = H , + V  

with 

H,= L,+ M, 

and 

V =  L I M , .  

The angular momenta L, and M ,  ( i  = 1 ,  2, 3 )  satisfy the algebra 

[ L , ,  Ljl = iEtjkhLk 

A natural representation of the basis of quantum states is in terms of the direct product 
of standard angular momentum states II ,  m)lI, m') .  For simplicity we take L = M where 
L2 = I (  I + 1 )  h '. The action of the operators L,  on 1 I ,  m )  is 

where -1 s m s 1. Similar relations hold for the operators M, when acting on the states 
/ I ,  ">. 
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Classically the motion in phase space is predominantly regular for L < 1 and L > 4. 
From numerical work [6] it is known that L = 3.5 gives chaos for a large interval of 
energy values. For this L, in our direct numerical analysis of the model, we will take 
1 = 14.5 and this gives h - 0.23. This is the largest value of I that we can conveniently 
use. From such computations it will emerge that the semiclassical theory is remarkably 
useful for calculating p,,(t) even for systems with such large h. 

For the coupled spin model the semiclassical analysis for $(E)  (cf ( 9 ) ,  (14) and 
(15 ) )  gives 

$(13.m3) ( E )  = J- d2q J- d2P 6 ( P , -  l M P 2 -  m3) 

x 6[ E - P I  -p2  - ( L2 - p ? ) ' I 2 (  L2 -p : ) '12  COS q1 COS 421 

L1= ( L 2  - p y 2  cos q' 

L~ = ( L' -p : ) '12  sin q l  

& = P I .  

(21) 
where 

(22) 

Identical relations with ( pl , q l )  replaced by ( p 2 ,  q2) give expressions for M ,  ( i  = 1 , 2 , 3 ) .  
The variables ( p , ,  q,) ( j  = 1,2)  are just the canonically conjugate momenta and coordin- 
ates for the coupled spin model. The integrals in (21) can be evaluated to give (for 
E <21) 

where 

for x > o  
otherwise 

e(x) = 

(with 0 s  ( q 2 ) o s  T) and 

Moreover 

R(E)  = l n  dq2-[sin-'( 1 (")' 'Os q2 ) -sin-'( L cos 42 
( 1  + L2 cos2 q 2 ) ' / 2  - n  cos 9 2  ( 1  + L2 cos2 q2)'/2 

where in the integrand 

E - L[  - E' COS' 92 + ( 1  + I' COS' q2)']'/' 
1 + L' cos2 q2 (P2)1= 

These formulae can, even in principle, only be valid approximately since there is always 
some small regular part of phase space. However, as we shall see, they are rather 
accurate. The relevant integrals need to be done numerically. 

Figures 1-4 summarise the ability of our semiclassical analysis to describe the 
dynamics of the coupled spin model with L = 3.5. The semiclassical prediction of 
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Figure 1. R ( E )  for semiclassical ( - )  and h =0.23 (+) calculations. 

E 

Figure 2. $ ( E )  for semiclassical ( - )  and h =0.23 (+) calculations. 
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Figure 3. & , , ( E )  for semiclassical ( - )  and h = 0.23 (+) calculations. 



1576 E R Pike, S Sarkar and J S Satchel1 

~, +-- * . - f rL ’ - ,  , , ~ ~ _ _  I 

I ’ -  
0 2 00 

t 
Figure 4. p,*,*(r)  for bemiclassical ( - 1  and  h = O  23 (+) calculations 

R ( E )  is only valid for the range of E where chaotic behaviour is predominant. (In 
fact, earlier numerical investigations showed that phase space was mainly chaotic for 
I E I < 6.6 and  mainly regular for I E I > 9.9.) Consequently the value of a( E )  falls to 
zero prematurely at values of E which correspond to the purely regular regions of the 
model. For smaller values of E the qualitative agreement between the semiclassical 
and full quantum results is very good as can be seen in figure 1. $ ( E )  also shows 
good agreement between the semiclassical and fully quantum results for an initial state 
with L, = 1.28 and  M ,  = -1.52. It is true that the statistics are not good. However, 
the important features of the restriction of & ( E )  to the energy shell (i.e. the constraint 
of the 13 function) and a peak at E = L, + M3 are found. The quantity E )  is of 
crucial importance to the dynamics; it shows truly impressive agreement between finite 
h and semiclassical calculations. As a result the behaviour of p%,( t )  predicted by the 
semiclassical analysis agrees very well with the full quantum calculation with 

h - 0.23. 

In  conclusion we have shown explicitly that semiclassical analysis can be used to 
describe quite accurately the decay of pure initial states for a Hamiltonian which 
classically shows chaos. This description will be valid for times of the order of the 
inverse of the coarse-graining scale. Semiclassically this is a large time. The techniques 
that we have used to calculate the dynamics should apply equally well to chaotic 
Hamiltonians. 
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